EE2003 Circuit Theory Chapter 5 Operational Amplifier

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Operational Amplifier - Chapter 5

5.1 What is an Op Amp?
5.2 Ideal Op Amp
5.3 Configuration of Op Amp
5.4 Cascaded Op Amp
5.5 Application

- Digital-to Analog Converter

5.1 What is an Op Amp (1)

- It is an electronic unit that behaves like a voltage-controlled voltage source.
- It is an active circuit element designed to perform mathematical operations of addition, subtraction, multiplication, division, differentiation and integration.

5.1 What is an Op Amp (2)

A typical op amp: (a) pin configuration, (b) circuit symbol

5.1 What is an Op Amp (3)

The equivalent circuit Of the non-ideal op amp

Op Amp output: \mathbf{v}_{o} as a function of \mathbf{V}_{d}

$$
v_{d}=v_{2}-v_{1} ; \quad v_{o}=A v_{d}=A\left(v_{2}-v_{1}\right)
$$

5.1 What is an Op Amp (4)

Typical ranges for op amp parameters

Parameter	Typical range	Ideal values
Open-loop gain, A	10^{5} to $10^{8} \Omega$	∞
Input resistance, R_{i}	10^{5} to $10^{13} \Omega$	$\infty \Omega$
Output resistance, R_{o}	10 to 100Ω	0Ω
Supply voltage, V_{CC}	5 to 24 V	

5.2 Ideal Op Amp (1)

An ideal op amp has the following characteristics:

1. Infinite open-loop gain, $A \approx \infty$
2. Infinite input resistance, $\mathrm{R}_{\mathrm{i}} \approx \infty$
3. Zero output resistance, $\mathrm{R}_{0} \approx 0$

5.2 Ideal Op Amp (2)

Example 1:
Determine the value of i_{o}.

*Refer to in-class illustration, textbook Ans: 0.65mA

5.3 Configuration of Op amp (1)

- Inverting amplifier reverses the polarity of the input signal while amplifying it

5.3 Configuration of Op amp (2)

Example 2
Refer to the op amp below. If $\mathrm{v}_{\mathrm{i}}=0.5 \mathrm{~V}$, calculate: (a) the output voltage, V_{o} and (b) the current in the $10 \mathrm{k} \Omega$ resistor.

Ans:
(a) -1.25 V ; (b) $50 \mu \mathrm{~A}$
*Refer to in-class illustration, textbook

5.3 Configuration of Op amp (3)

- Non-inverting amplifier is designed to produce positive voltage gain

$$
v_{o}=\left(1+\frac{R_{f}}{R_{1}} v_{i}\right)
$$

5.3 Configuration of Op amp (4)

Example 3
For the op amp shown below, calculate the output voltage V_{o}.

*Refer to in-class illustration, textbook Ans: -1V

5.3 Configuration of Op amp (5)

- Summing Amplifier is an op amp circuit that combines several inputs and produces an output that is the weighted sum of the inputs.

$$
v_{o}=-\left(\frac{R_{f}}{R_{1}} v_{1}+\frac{R_{f}}{R_{2}} v_{2}+\frac{R_{f}}{R_{3}} v_{3}\right)
$$

5.3 Configuration of Op amp (6)

Example 4
Calculate v_{o} and i_{o} in the op amp circuit shown below.

*Refer to in-class illustration, textbook Ans: -3.8V, -1.425mA

5.3 Configuration of Op amp (7)

- Difference amplifier is a device that amplifies the difference between two inputs but rejects any signals common to the two inputs.

$$
v_{o}=\frac{R_{2}\left(1+R_{1} / R_{2}\right)}{R_{1}\left(1+R_{3} / R_{4}\right)} v_{2}-\frac{R_{2}}{R_{1}} v_{1} \Rightarrow v_{o}=v_{2}-v_{1} \text {, if } \frac{R_{2}}{R_{1}}=\frac{R_{3}}{R_{4}}=1
$$

5.3 Configuration of Op amp (1)

- Inverting amplifier reverses the polarity of the input signal while amplifying it

5.3 Configuration of Op amp (6)

Example 5
Determine R_{1}, R_{2}, R_{3} and R_{4} so that $v_{0}=-5 v_{1}+3 v_{2}$ for the circuit shown below.

Ans:

$$
\begin{aligned}
& \mathrm{R}_{1}=10 \mathrm{k} \Omega \\
& \mathrm{R}_{2}=50 \mathrm{k} \Omega \\
& \mathrm{R}_{3}=20 \mathrm{k} \Omega \\
& \mathrm{R}_{4}=20 \mathrm{k} \Omega
\end{aligned}
$$

*Refer to in-class illustration, textbook

5.4 Cascaded Op Amp (1)

- It is a head-to-tail arrangement of two or more op amp circuits such that the output to one is the input of the next.

5.4 Cascaded Op Amp (2)

Example 6

Find v_{0} and i_{0} in the circuit shown below.

*Refer to in-class illustration, textbook

5.4 Cascaded Op Amp (3)

Example 7
If $v_{1}=1 \mathrm{~V}$ and $\mathrm{v}_{2}=2 \mathrm{~V}$, find v_{0} in the op amp circuit shown below.

*Refer to in-class illustration, textbook
Ans: 8.667 V

5.5 Application (1)

- Digital-to Analog Converter (DAC) : it is a device which transforms digital signals into analog form.

Four-bit DCA: (a) block diagram (b) binary weighted Iadder type

(b)

$$
-V_{0}=\frac{R_{f}}{R_{1}} V_{1}+\frac{R_{f}}{R_{2}} V_{2}+\frac{R_{f}}{R_{3}} V_{3}+\frac{R_{f}}{R_{4}} V_{4}
$$

where

$$
\begin{aligned}
& \mathrm{V}_{1}-\mathrm{MSB}, \mathrm{~V}_{4}-\mathrm{LSB} \\
& \mathrm{~V}_{1} \text { to } \mathrm{V}_{4} \text { are either } 0 \text { or } 1 \mathrm{~V}
\end{aligned}
$$

5.5 Application(2)

Example 8

For the circuit shown below, calculate v_{0} if $\mathrm{v}_{1}=$ $0 \mathrm{~V}, \mathrm{v}_{2}=1 \mathrm{~V}$ and $\mathrm{v}_{3}=1 \mathrm{~V}$.

*Refer to in-class illustration, textbook

